16. In the diagram, $\triangle N P Q \sim \triangle N L M$ and $P L=5$.
a. Find the value of x

$$
\begin{array}{ll}
\begin{array}{l}
3 x+18=60 \\
\cdot 18-18
\end{array} & \frac{3 x}{3}=\frac{42}{3} \\
\text { b. Find the lengths } N P \text { and } N L . & x=14
\end{array}
$$

$\frac{5-y}{y} \leq \frac{4}{3.2}$
$3.2(5-y)=4 y$

$$
\begin{aligned}
& 16-3.2 y=4 y \quad \quad 2.2=y \\
& +3.2 y+3.2 y \\
& \frac{16}{7.2}=\frac{7.2 y}{7.2}
\end{aligned}
$$

12.1 Triangle Proportionality

Theorem

Prove theorems about triangles

Triangle Proportionality Theorem

Theorem	Hypothesis	Conclusion
If a line parallel to a side of a triangle intersects the other two sides, then it divides those sides proportionally.	$\frac{A E}{E B}=\frac{A F}{F C}$	

Find the length of each segment.

1. CY

$$
\frac{9 c y}{9}=\frac{40}{9}
$$

2. PN

Your Turn
Find the length of each segment.
5. $\overline{D G}$
6. $\overline{R N}$

$$
\frac{8 R N}{8}=\frac{50}{8}
$$

Verify that the line segments are parallel.

1. $M N$ and $K L$

$$
\begin{aligned}
& \frac{21}{42}-\frac{15}{30} \\
& 630=630 \mathrm{~V}
\end{aligned}
$$

2. $D E$ and $A B(A C=36 \mathrm{~cm} B C=27 \mathrm{~cm})$

$$
\frac{16}{20}=\frac{12}{15}
$$

$240=240 \mathrm{~J}$

