Bell Work

Looking at the graph, explain how point A moves to point B

$$
\begin{aligned}
& \text { Right } 10 \\
& \text { Up II } \\
& (x+10, y+11)
\end{aligned}
$$

2.1 Translations/11.1 Dilation

Vector- a quantity that has both direction and magnitude

Initial point- the starting point

Terminal point- the ending point

To name this vector: $\stackrel{\rightharpoonup}{E F} \rightarrow$

It is convenient to describe translations using vectors. A translation is a transformation along a vector such that the segment joining a point and its image has the same length as the vector and is parallel to the vector.

For example, $\overline{B B^{\prime}}$ is a line segment that is the same length as vector $\stackrel{\nu}{\nu}$ and is parallel to vector $\vec{\nu}$.
Pre-Image $A^{A^{\prime}}$ Image

page 65 A \& B

Pg. 65 A
(A)

Pg 66

Your Turn

4. Draw the image of $\triangle A B C$ after a translation along \vec{v}.

A vector can also be named using component form, $\langle a, b\rangle$, which specifies the horizontal change a and the vertical change b from the initial point to the terminal point.

x, y
$\langle a, b\rangle$
ta-Right
-a-Left
$+b-u_{p}$
-b-down

The component form for $\overline{P Q}$ is $\langle 5,3\rangle$. You can use the component form of the vector to draw coordinates for a new image on a coordinate plane. When you move an image to the right a units and up b units, you use the rule $(x, y) \rightarrow(x+a, y+b)$, which is the same as moving the image along vector $\langle a, b\rangle$.

pg 67

Your Turn

Draw the preimage and image of each triangle under a translation along $\langle-4,1\rangle$.
5. Triangle with coordinates: $A(2,4), B(1,2), C(4,2)$.

6. Triangle with coordinates: $P(2,-1), Q(2,-3), R(4,-3)$.

Find the vector in component form pg 67
(A)

(B)

RSU3
$\langle 5,3\rangle$

Rules for Translations on a Coordinate Plane

Translation a units to the right
$(x, y) \rightarrow(x+a, y)$
Translation a units to the left
$(x, y) \rightarrow(x-a, y)$
Translation b units up
$(x, y) \rightarrow(x, y+b)$
Translation bunits down
$(x, y) \rightarrow(x, y-b)$

Now use the rule to calculate the missing coordinates. Drag the coordinates
to the proper locations to complete the table below.

Preimage coordinates (x, y)	Image Coordinates $(x-4, y-3)$
$(1,3)$	$(-3,0)$
$(0,1)$	$(-4,-2)$

$$
(-4,-2)
$$

$(-3,0)$
$(2,1)$
$(-2,-2)$

P9. 69-70 \#1-3, 5-10, 12-15
\square

