## Bell Work

Looking at the graph, explain how point A moves to point B



# 2.1 Translations/11.1 Dilations

Vector- a quantity that has both direction and magnitude

Initial point- the starting point

Terminal point- the ending point



It is convenient to describe translations using vectors. A <u>translation</u> is a transformation along a vector such that the segment joining a point and its image has the same length as the vector and is parallel to the vector.

For example,  $\overline{BB'}$  is a line segment that is the same length as vector  $\overrightarrow{
u}$  and is parallel to vector  $\overrightarrow{
u}$ .



page 65 A & B



### Pg 66

### Your Turn

**4.** Draw the image of  $\triangle ABC$  after a translation along  $\overrightarrow{v}$ .



A vector can also be named using component form, < a, b>, which specifies the horizontal change a and the vertical change b from the initial point to the terminal point.



The component form for  $\overline{PQ}$  is <5,3>. You can use the component form of the vector to draw coordinates for a new image on a coordinate plane. When you move an image to the right a units and up b units, you use the rule  $(x,y) \to (x+a,y+b)$ , which is the same as moving the image along vector < a,b>.



### pg 67

#### Your Turn

Draw the preimage and image of each triangle under a translation along  $\langle -4,1 \rangle$ .

**5.** Triangle with coordinates: A(2, 4), B(1, 2), C(4, 2).



**6.** Triangle with coordinates: P(2,-1), Q(2,-3), R(4,-3).



## Find the vector in component form pg 67

45,-4>

A



B



RS 43 45,3>

### Rules for Translations on a Coordinate Plane

Translation a units to the right

$$(x, y) \rightarrow (x + a, y)$$

Translation a units to the left

$$(x, y) \rightarrow (x - a, y)$$

Translation b units up

$$(x, y) \rightarrow (x, y+b)$$

Translation bunits down

$$(x, y) \rightarrow (x, y-b)$$

Now use the rule to calculate the missing coordinates. Drag the coordinates to the proper locations to complete the table below.

| Preimage coordinates (x, y) | Image Coordinates<br>(x - 4, y - 3) |
|-----------------------------|-------------------------------------|
| (1, 3)                      | (-3,0)                              |
|                             |                                     |
| (0, 1)                      | (-4,-2)                             |

(-4, -2) (-3, 0) (2, 1) (-2, -2)

pg. 69-70 #1-3, 5-10, 12-15