3.2 Proving Figures are Congruent Using Rigid Motions

Essential Question: How can you determine whether two figures are congruent?

Two plane figures are congruent if and only if one can be obtained from the other by a sequence of rigid motions (that is, by a sequence of reflections, translations, and/or rotations).

Remember, in order for 2 figures to be congruent to each other they must have the same size and shape!

Example: Use the definition of congruence to decide whether the two figures are congruent. Explain your answer.

$$
\begin{gathered}
(y \text {-axis Reflection) } \\
\Sigma=(-2,4) \quad L=(2,4) \\
y \text {-axis- }(-x, y) \\
x \text {-axis- }(x,-y)
\end{gathered}
$$

$$
\begin{gathered}
B=(8,4) \quad y=(-4,8) \\
(-y, x)
\end{gathered}
$$

pg. 128 B
The two figures appear to be the same/different.
You can map $\triangle A B C$ to $\triangle X Y Z$
by

This is/is not a rigid motion that maps $\triangle A B C$ to $\triangle X Y Z$, so the two figures are/are not congruent.

The coordinate notation for the rotation is \qquad

The figures shown are congruent. Find a sequence of rigid motions that maps one figure to the other. Give coordinate notation for the transformations you use. JKLM $\cong W X Y Z$

$$
x \text {-axis }(x,-y)
$$

$$
44,02
$$

$$
(x-4, y-2)
$$

$$
(x, y) \rightarrow(x,-y) \rightarrow(x-4, y-2)^{2}
$$

pg. 123 \# 5,6
pg. 132 \#6-8

