4.1 Angles Formed by

Intersecting Lines

Essential Question: How can you find the measures of angles formed by intersecting lines?

Linear Pair Theorem

A linear pair is a pair of adjacent angles whose noncommon sides are opposite rays.

The Linear Pair Theorem

If two angles form a linear pair, then they are supplementary.

$\mathrm{m} \angle 3+\mathrm{m} \angle 4=180^{\circ}$

Vertical Angles- the angles that are opposite each other when two lines intersec \dagger

The Vertical Angles Theorem

If two angles are vertical angles, then the angles are congruent.

$\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Example 1 Cross braces help keep the deck posts straight. Find the measure of each angle.

Find $\angle 6$

146°
$\angle 5$ and $\angle 7$
$180-146=34^{\circ}$

pg. 166

6. The measures of two vertical angles are 58° and $(3 x+4)^{\circ}$. Find the value of x.

7. The measures of two vertical ${ }^{3}$ angles $\frac{3}{3}$ e given by the expressions $(x+3)^{\circ}$ and $(2 x-7)^{\circ}$. Find the value of x. What is the measure of each angle?

$$
\begin{array}{r}
x+3=2 x-7 \\
-10=x
\end{array}
$$

$$
13^{\circ} \quad 13^{\circ}
$$

Complementary Angles- two angles whose measures have a sum of 90 degrees

Supplementary Angles- two angles whose measures have a sum of 180 degrees

Example 2 Use the diagram below to find the missing angle measures. Explain your reasoning.

Find the measures of $\angle A F C$ and $\angle A F B$. Find the measures of $\angle D F E$ and $\angle A F E$.

