Bell Work

Write all of the following angle pairs

1) Corresponding - $1-6$
2) Alternate Interior -5-8
3) Same-Side Interior-5-6
4) Vertical Angles
5) Linear Pair

4.3 Proving Lines are Parallel

4.5 Equations of parallel lines

Essential Question: How can you prove that two lines are parallel?

Converse- in an if-then statement
 "if p, then q " you swap p and q

For example: Write the converse to "If it rains, then the ground is wet."

Statements

lines ℓ and m are parallel
$\angle 6$ and $\angle 3,1$ are supplementary
$\angle 4 \cong \angle 6,8$
$\angle 3,1 \cong \angle 7$

Converse of the Same-Side Interior Angles Postulate
If two lines are cut by a transversal so that a pair of same-side interior angles are supplementary, then the lines are parallel.

Converse of the Alternate Interior Angles Theorem
If two lines are cut by a transversal so that any pair of alternate interior angles are congruent, then the lines are parallel.

Converse of the Corresponding Angles Theorem
If two lines are cut by a transversal so that any pair of corresponding angles are congruent, then the lines are parallel.

Example 3 Use the given angle relationships to decide whether the lines are parallel. Explain your reasoning.

$$
\begin{array}{ll}
\angle 3 \cong \angle 5 & m \angle 4=(x+20)^{\circ}, m 8=(2 x+5)^{\circ} \text {, mad } x=15 . \\
\text { Yes, by Converse of } & \angle 4=15+20 \quad \angle 8=2(15)+5 \\
\text { Alt. Int. Ang. The. } & \angle 4=35^{\circ} \quad \angle 8=35^{\circ}
\end{array}
$$

Identify the type of angle pair described in the given
condition. How do you know that lines ℓ and m are parallel?
8. $\mathrm{m} \angle 3+\mathrm{m} \angle 6=180^{\circ}$
\qquad
\qquad
9. $\angle 2 \cong \angle 6$
\qquad

How to calculate slope from graph/ordered pairs
Slope formula: $\frac{\Delta y}{\Delta X} \longrightarrow \frac{Y_{2}-Y_{1}}{X_{2}-X_{1}} \longrightarrow \frac{\text { Rise }}{\text { Run }}$

What makes parallel lines never intersect?
(1) Same Slope
(2) Different y-int

$$
\begin{aligned}
& y=m x+b \\
& \text { Slope } \hat{y} \text {-int }
\end{aligned}
$$

Ex. Write the equation of the line parallel to $y=\underline{5} x+1$ that passes through $(-1,2)$.

$$
\begin{aligned}
& y=m x+b \quad m=5 \quad y=5 x+7 \\
& 2=(5)(-1)+b \\
& 2=-5+b \\
& +5+5 \\
& 7=b
\end{aligned}
$$

Ex. 2) Write the equation of the line parallel to $y=-x$, and goes through the point $(5,2.5)$

$$
\begin{aligned}
& y=m x+b \\
& 2.5=(-1)(5)+b \quad y=-x+7.5 \\
& 2.5=-5+b \\
& +5+5 \\
& \hline 7.5=b
\end{aligned}
$$

pg. 191-192 \#4-10
pg. 209-210 \#5-7,12, 15

