Bell Work

P is thencente of $\triangle A B C$. Determine whether each statement is true or false. Select the correct answer for each lettered part.

a. Point P must lie on the perpendicular bisector of $\overline{B C}$.
b. Point P must lie on the angle bisector of $\angle C$.True
c. If $A P$ is 23 mm long, then $C P$ must be 23 mm long.

True False
d. If the distance from point P to $\overline{A B}$ is x, then the distance from point P to $\overline{B C}$ must be x.
TrueFalse
e. The perpendicular segment from point P to $\overline{A C}$ is longer than the perpendicular segment from point P to $\overline{B C}$.TrueFalse

8.3 Medians and Altitudes of Triangles

Tear out pages 383-388

A median of a triangle is a segment whose endpoints are a vertex of a triangle and the midpoint of the

$$
\begin{aligned}
& \text { opposite side. Goes to opposite } \\
& \text { Median - Midpoint } \\
& \text { Does not make } 90^{\circ} \text { angle }
\end{aligned}
$$

Centroid(center of gravity)- the point of concurrency of the three medians of a triangle

Centroid Theorem

The centroid theorem states that the centroid of a triangle is located $\frac{2}{3}$ of the distance from each vertex to the midpoint of the opposite side.

$$
A P=\frac{2}{3} A X \quad B P=\frac{2}{3} B Y \quad C P=\frac{2}{3} C Z
$$

Example 1 Use the Centroid Theorem to find the length.
$A F=9$, and $C E=7.2$
(4) $A=\frac{2}{3} A F$

(1) $a=\frac{1}{3} c \varepsilon$
$A 6=\frac{2}{3}(9)$
$A G=6$ $6 \varepsilon=\frac{1}{3}(7.2)$

6. Vertex L is 8 units from the centroid of $\triangle L M N$. Find the length of the median that has one endpoint at L.

7. Let P be the centroid of $\triangle S T U$, and
let $\overline{S W}$ be a median of $\triangle S T U$.
If $S W=18$, find $S P$ and $P W$.

8. In $\triangle A B C$, the median $\overline{A D}$ is perpendicular to $\overline{B C}$. If $A D=21$ feet, describe the position of the centroid of the triangle.

Example 2 Find the coordinates of the centroid of the triangle shown on the
Median:

$$
P Q=\left(\frac{0+3}{2}, \frac{8+0}{2}\right)=(1.5,4)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Find the centroid of the triangles with the given vertices. Show your work and check } \\
\text { your answer } \\
\text { 9. } P(-1,7), Q(Q, 5), R(4,3)
\end{array} \\
& P Q=\left(\frac{-1+9}{2}, \frac{7+5}{2}\right) \\
& P Q=(4,5) \\
& R Q=\left(\frac{9+4}{2}, \frac{5+3}{2}\right) \\
& R Q=(6.5,4) \\
& \\
& R
\end{aligned}
$$

An altitude of a triangle is a perpendicular segment from a vertex to the line containing the opposite side. Every triangle has three altitudes. An altitude can be inside, outside, or on the triangle.

The orthocenter of a triangle is the point of concurrency of the altitudes in a triangle. Point C is the orthocenter for Triangle ABP

Example 3 Find the orthocenter of the triangle by graphing the
perpendicular lines to the sides of the triangle.

Altitudes-Vertex to opp. side

 Must make io
Opp. Rec. Slopes

Spp. Rec. Slopes
Slope $O P=\frac{6}{2}=\frac{3}{1}=\frac{-1}{3}$

($2,2,2)$

$$
A B=\frac{1}{1} \rightarrow \frac{-1}{1}
$$

(9,-1)

Homework
pg. 391-392 \# 5-18

