Bell Work: **Hint graph it out**
Find the orthocenter of each triangle with the given vertices.
$A(2,2), B(2,10), C(4,2) \cup$ Altitudes 90° to opposite
OC. $=(2,2)$ side from Vertex

* If right triangle, orthocenter is orded pair
 where right angle is formed. *

8.4 Midsegments of Triangles

Essential Question: How are the segments that join thee midpoints of a triangle's sides related to the triangle's sides?

Midsegment- a line segment that

connects the midpoints of 2 sides of the
triangle (parallel to the 3 rd side and is $1 / 2$
as long as the 3rd side)
In the support for the garden swing shown, the crossbar is the midsegment

> Example 1 Show that the given midsegment of the triangle is parallel to the third side of the triangle and is half as long as the third side.
> The vertices of $\triangle L M N$ are $L(2,7), M(10,9)$, and $N(8,1) \cdot \underline{p}$ is the 10
> midpoint of $\overline{L M}$, and Q is the midpoint of $\overline{M N}$.
> Show that $\overline{P Q} \| \overline{L N}$ and $P Q=\frac{1}{2} L N$. Sketch $\overline{P Q}$.
> SameSlope Distance
> This is on page 397
> $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
> $P=\left(\frac{2+10}{2}, \frac{7+9}{2}\right)=(6,8)$
> $Q=\left(\frac{10+8}{2}, \frac{9+1}{2}\right)=(9,5)$
> $L=(2,7)$
> $N=(8,1)$
> $P Q=\sqrt{18}$
> 9.2
> $P Q=\sqrt{9} \cdot \sqrt{2}$
> $P Q=3 \sqrt{2}$
> $\begin{gathered}L N=\sqrt{72} \\ 7 \cdot 2 / 18 \\ 4 \cdot 8 \\ 3 \cdot 8.2 \\ L N=\sqrt{36} \cdot \sqrt{2}\end{gathered}$
> $L N=6 \sqrt{2}$

$$
\begin{aligned}
& \text { pg. } 398 \\
& \text { JL, PM, } \angle M L K \\
& J L=39 \cdot 2=78 \\
& \text { PM }=95 \div 2=47.5 \\
& \angle M L K=105^{\circ}
\end{aligned}
$$

p9. 400 \# 6-10

